

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4725

Further Pure Mathematics 1

Wednesday 18 JANUARY 2006

Afternoon

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 (i) Express (1 + 8i)(2 - i) in the form x + iy, showing clearly how you obtain your answer. [2]

(ii) Hence express
$$\frac{1+8i}{2+i}$$
 in the form $x+iy$. [3]

- 2 Prove by induction that, for $n \ge 1$, $\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$. [5]
- 3 The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix}$.
 - (i) Find the value of the determinant of M. [3]
 - (ii) State, giving a brief reason, whether M is singular or non-singular. [1]
- 4 Use the substitution x = u + 2 to find the exact value of the real root of the equation

$$x^3 - 6x^2 + 12x - 13 = 0.$$
 [5]

5 Use the standard results for $\sum_{r=1}^{n} r$, $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$ to show that, for all positive integers n,

$$\sum_{r=1}^{n} (8r^3 - 6r^2 + 2r) = 2n^3(n+1).$$
 [6]

6 The matrix C is given by $C = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$.

(i) Find
$$C^{-1}$$
. [2]

(ii) Given that
$$C = AB$$
, where $A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$, find B^{-1} . [5]

- 7 (a) The complex number 3 + 2i is denoted by w and the complex conjugate of w is denoted by w^* . Find
 - (i) the modulus of w, [1]
 - (ii) the argument of w^* , giving your answer in radians, correct to 2 decimal places. [3]
 - (b) Find the complex number u given that $u + 2u^* = 3 + 2i$. [4]
 - (c) Sketch, on an Argand diagram, the locus given by |z + 1| = |z|. [2]

- 8 The matrix **T** is given by $\mathbf{T} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$.
 - (i) Draw a diagram showing the unit square and its image under the transformation represented by **T**.
 - (ii) The transformation represented by matrix **T** is equivalent to a transformation A, followed by a transformation B. Give geometrical descriptions of possible transformations A and B, and state the matrices that represent them. [6]
- 9 (i) Show that $\frac{1}{r} \frac{1}{r+2} = \frac{2}{r(r+2)}$. [2]
 - (ii) Hence find an expression, in terms of n, for

$$\frac{2}{1\times 3} + \frac{2}{2\times 4} + \ldots + \frac{2}{n(n+2)}.$$
 [5]

(iii) Hence find the value of

(a)
$$\sum_{r=1}^{\infty} \frac{2}{r(r+2)}$$
, [1]

(b)
$$\sum_{r=n+1}^{\infty} \frac{2}{r(r+2)}$$
. [2]

10 The roots of the equation

$$x^3 - 9x^2 + 27x - 29 = 0$$

are denoted by α , β and γ , where α is real and β and γ are complex.

- (i) Write down the value of $\alpha + \beta + \gamma$. [1]
- (ii) It is given that $\beta = p + iq$, where q > 0. Find the value of p, in terms of α . [4]
- (iii) Write down the value of $\alpha\beta\gamma$. [1]
- (iv) Find the value of q, in terms of α only. [5]

Mark Total

			т -	<u> </u>
1.	(i) 2 + 16i -i -8i ² 10 +15i (ii)	M1 A1 M1 A1	2	Attempt to multiply correctly Obtain correct answer Multiply numerator & denominator by conjugate Obtain denominator 5
	$\frac{1}{5}(10 + 15i)$ or 2 + 3i	Alft	3	Their part (i) or 10 + 15i derived again / 5
			5	
2.	$1^2 = \frac{1}{6} \times 1 \times 2 \times 3$	B1		Show result true for $n = 1$ or 2
	$\frac{1}{6}n(n+1)(2n+1)+(n+1)^2$	M1		Add next term to given sum formula, any letter OK
	6	141 /		
		DM1		Attempt to factorise or expand and simplify
	$\frac{1}{6}(n+1)(n+2)\{2(n+1)+1\}$	A1	_	Correct expression obtained
	0	A1	5	Specific statement of induction conclusion, with no
			5	errors seen
3.			 	
	(i)			
	$2\begin{bmatrix} 21\\13 \end{bmatrix} - 1\begin{bmatrix} 11\\13 \end{bmatrix} + 3\begin{bmatrix} 12\\11 \end{bmatrix}$	M1		Show correct expansion process, allow sign slips
	[13] [13] [11] 2x5-1x2+3x-1			
	5	Al Al	3	Obtain correct (unsimplified) expression Obtain correct answer
	(ii)	B1ft	1	State that M is non-singular as det M non-zero, ft their
		1		determinant
4.			4	
7.	$u^2 + 4u + 4$	В1		u + 2 squared and cubed correctly
	$u^3 + 6u^2 + 12u + 8$			
		M1		Substitute these and attempt to simplify
		A1		Obtain $u^3 - 5 = 0$ or equivalent
	3 <i>[</i> -	A1ft		Correct solution to their equation
	$u = \sqrt[3]{5}$ $x = 2 + \sqrt[3]{5}$			·
	$x = 2 + \sqrt{5}$	A1ft		Obtain 2 + their answer [Decimals score 0/2 of final A marks]
			5	•
			5	
			-	
<u> </u>		L	<u>L_</u>	<u> </u>

	$2\Sigma r = n(n+1)$ $2n^{3}(n+1)$	AG	M1 A1	6 6	Attempt to factorise or expand and simplify Obtain given answer correctly
			A1		Correct term seen
	$6\Sigma r^2 = n(n+1)(2n+1)$		A1		Correct formula stated or used a.e.f.
	$8\Sigma r^3 = 2n^2(n+1)^2$		A1		Correct formula stated or used a.e.f.
5.	$8\Sigma r^3 - 6\Sigma r^2 + 2\Sigma r$		M1		Consider the sum of three separate terms

6.	(i) $\frac{1}{2} \begin{pmatrix} 8 & -2 \\ -3 & 1 \end{pmatrix}$ (ii) Either $\frac{1}{2} \begin{pmatrix} 14 & 2 \\ -5 & 0 \end{pmatrix}$	B1 B1 B1 M1A1	2	Transpose leading diagonal and negate other diagonal Divide by determinant State or imply (AB) ⁻¹ = B ⁻¹ A ⁻¹ Use this result and obtain B ⁻¹ = C ⁻¹ A, or equivalent matrix algebra Matrix multn., two elements correct, for any pair
	Or	A1ft		All elements correct ft their (i)
	$\frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$ $\mathbf{B} = \mathbf{A}^{-1} \mathbf{C}$ $\mathbf{B} = \frac{1}{5} \begin{pmatrix} 0 & -2 \\ 5 & 14 \end{pmatrix}$ $\frac{1}{2} \begin{pmatrix} 14 & 2 \\ -5 & 0 \end{pmatrix}$ Or	B1 M1 M1 A1ft		Find A ⁻¹ Premultiply by A ⁻¹ stated or implied Matrix multn. Two elements correct All elements correct Correct B ⁻¹
	$AB = \begin{pmatrix} 2a + c 2b + d \\ a + 3c b + 3d \end{pmatrix}$ $a = 0, c = 1, b = -0.4, d = 2.8$ $\frac{1}{2} \begin{pmatrix} 14 & 2 \\ -5 & 0 \end{pmatrix}$	B1 M1 A1A1 A1	7	Find AB Solve one pair of simultaneous equations Each pair of answers Correct B ⁻¹

7.	(a) (i) √13 (ii)	B1	1	Obtain correct answer, decimals OK
	- 0.59	M1 A1 A1	3	Using tan ^{-1 b} / _a , or equivalent trig allow + or - Obtain 0.59 Obtain correct answer
	(b)	M1		Express LHS in Cartesian form & equate real and imaginary parts
	1 – 2i	A1A1 A1	4	Obtain $x = 1$ and $y = -2$ Correct answer written as a complex number
	(c)	B1 B1	2	Sketch of vertical straight line Through (- 0.5, 0)
			10	
8.	(i)	B1		For correct vertex (2, -2)
	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix}$	B1 B1	3	For all vertices correct For correct diagram
	(ii) Either $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B1,B1 B1		Reflection, in <i>x</i> -axis Correct matrix
	$\left(\begin{array}{cc}2&0\\0&2\end{array}\right)$	B1,B1 B1	6	Enlargement, centre O s.f.2 Correct matrix
	Or $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	B1,B1 B1		Reflection, in the <i>y</i> -axis Correct matrix
	$\left(\begin{array}{cc} -2 & 0 \\ 0 & -2 \end{array}\right)$	B1,B1 B1		Enlargement, centre <i>O</i> s.f. –2 Correct matrix
	Or $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$	B1,B1 B1		Stretch, in <i>x</i> -direction s.f. 2 Correct matrix
	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -2 \end{array}\right)$	B1,B1 B1		Stretch, in <i>y</i> -direction s.f2 Correct matrix
			9	

9.	r + 2 - r	M1		Show correct process for subtracting fractions
] .	(i) $\frac{r+2-r}{r}$		l l	onew contest process for submissioning mastering
	r(r+2)			
	2	A1	2	Obtain given answer correctly
	(i) $\frac{r+2-r}{r(r+2)}$ $\frac{2}{r(r+2)}$	\G		
	· (-)	M1		Express terms as differences using (i)
	(ii)	'*' '		Express terms as differences using (i)
		M1	į	Express 1 st 3 (or last 3) terms so that cancelling occurs
		A1		Obtain $1 + \frac{1}{2}$
		A1		1 1
				Obtain $-\frac{1}{n+2}$, $-\frac{1}{n+1}$
	3 1 1		j	n+2 $n+1$
1	$\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2}$	A1		Obtain correct answer in any form
	2 n+1 n+2		5	Obtain correct answer in any form
	(iii) (a)			
ļ		B1f	t 1	Obtain value from their sum to <i>n</i> terms
	$\frac{3}{2}$			
	_			
	(b)			Using (iii) (a) - (ii) or method of differences again
i	$\frac{1}{1} + \frac{1}{1}$	M1		$[n \rightarrow \infty]$ is a method error]
1	$\frac{1}{n+1} + \frac{1}{n+2}$	A1	ft 2	Obtain answer in any form
1		1	`` -	·
			10	
10.	(i)			
	$\alpha + \beta + \gamma = 9$	D4		
]	·	B1	1	
	(ii)	B1		State or use other root is p - iq
	•	M1		Substitute into (i)
	$p=\frac{9-\alpha}{2}$	A1		Obtain $2p + \alpha = 9$
İ	2	A1	4	Obtain correct answer a.e.f.
	(iii) $\alpha\beta\gamma = 29$	B1	1	·
	(iv)	M1		Substitute into (iii)
	$\alpha(p^2+q^2)=29$	A1f	t	Obtain unsimplified expression with no i's
	4 /	1		
		M1		Rearrange to obtain q or q^2
	$\sqrt{29 - (9 - \alpha)^2}$	M1		Substitute their expression for <i>p</i> a.e.f.
	$q = \sqrt{\frac{29}{\alpha} - \frac{(9 - \alpha)^2}{4}}$	A1	5	Obtain correct answer a.e.f.
	'α 4		11	
	(iv) Alternative method			Substitute into $\alpha\beta + \beta\gamma + \gamma\alpha = 27$
	$2p\alpha + p^2 + q^2 = 27$	M1 A1		Obtain unsimplified expression with no i's
	2ρα τ ρ τ γ - 21	^'		2
		M1		Rearrange to obtain q or q^2
	,2	м1		Substitute their expression for p a.e.f.
	$q = \sqrt{27 - \frac{(9 - \alpha)^2}{4} - \alpha(9 - \alpha)^2}$	(a) A1		Obtain correct answer a.e.f.
L	4			